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The initial inverse electron-demand hetero-Diels-Alder reaction of N-sulfonyldivinylmethanimine with
electron-rich dienophiles (ethyl vinyl ether and ethyl vinyl sulfide) affords [4+2] cycloadducts with high
endo selectivity. The monocycloadducts then undergo a second Diels—Alder reaction on the newly formed
diene unit with electron-deficient dienophiles (tetracyanoethylene, 4-phenyl-1,2,4-triazoline-3,5-dione,
and N-phenylmaleimide) to give highly stereoselectively the crossed biscycloadducts, hexa- and octa-

hydroquinolines, and octahydropyridopyridazines.

© 2008 Elsevier Ltd. All rights reserved.

The diene-transmissive Diels-Alder (DTDA) reaction is a useful
and attractive method for constructing polyring-fused cyclic com-
pounds, consisting of two sequential (tandem) Diels-Alder (DA)
reactions that involve an initial DA reaction of a cross-conjugated
triene (or its equivalent), followed by a second DA reaction of the
monoadduct using the newly formed diene unit. Many advances
and applications of this DTDA methodology of carbotrienes have
been reported.! However, only a few examples of the diene-
transmissive hetero-Diels-Alder (DTHDA) reaction involving one
or more hetero-DA reactions in the tandem sequence have been
reported, despite its high potential for straightforward and
efficient construction of polyring-fused heterocyclic compounds
with high regio- and stereoselectivity.>=>

The first reported examples of the DTHDA reaction included
that of cross-conjugated thiatrienes.>® Tsuge et al.* and Spino et
al.> demonstrated the DTHDA reaction of cross-conjugated oxatri-
enes. Our group previously reported the first DTHDA reaction of
cross-conjugated azatrienes to produce hexa- and octahydroqui-
nazolinones with high regio- and stereoselectivities, which in-
cluded the initial aza-Diels-Alder reaction with tosyl isocyanate.®
We also succeeded in a stereoselective synthesis of hexahydro-
quinolinones by a DTHDA methodology using ketenes as a dieno-
phile in the initial aza-DA reaction.” To extend this azatriene-
DTHDA methodology, we were prompted to use cross-conjugated
azatrienes bearing an electron-withdrawing sulfonyl group on
the nitrogen atom,® which involved an inverse electron-demand
aza-DA reaction in the initial cycloaddition. We report the preli-
minary results here.
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The cross-conjugated azatrienes 1 were prepared by condensa-
tion between di-B-styryl ketone and corresponding sulfonamides
using TiCl4 and Et3N; and they were stable enough to allow isola-
tion after aqueous workup and/or column chromatography. First,
the initial DA reaction of the azatrienes 1 with ethyl vinyl ether
was performed (Scheme 1, Table 1). When N-methanesulfonyl
azatriene 1a was heated in the presence of excess ethyl vinyl ether
in toluene for 23 h, the corresponding [4+2] cycloadduct 2a° was
obtained in 68% yield with an endo:exo ratio of 90:10 (entry 1).
Azatrienes 1b and 1c also reacted with ethyl vinyl ether under
the same reaction conditions to give highly endo selectively 2b
and 2c in 86% and 88% yields, respectively; no exo-isomers were
detected in the crude mixture (entries 2 and 3). Similarly, the reac-
tions of 1a and 1b with ethyl vinyl sulfide proceeded in refluxing
toluene to produce the monoadducts 3a and 3b in fair to good
yields with high endo selectivity (entries 4 and 5).

Because the obtained monoadducts 2 and 3 possess an electron-
rich aminodiene moiety, a second DA reaction could be performed
with electron-deficient dienophiles. First, the reactions of 2 and 3
with tetracyanoethylene (TCNE) were carried out to examine dia-
stereo-n-facial selectivity (Scheme 2 and Table 2). The reaction of
2a-c with TCNE proceeded at room temperature for 10 min to pro-
duce [4+2] cycloadducts 4a-c'® in 93-99% yields with complete
diastereo-n-facial selectivity (Table 2, entries 1-3). Similarly, the
reaction of 3a,b proceeded smoothly in refluxing dichloromethane
to give 5a,b in high yields (entries 4 and 5). A one-pot procedure
1b—2b—4b proved the DTHDA methodology to be even more
effective and viable (entry 6). In all cases, the dienophile added
from the less-hindered bottom H-4-side of the diene moiety, a con-
clusion that was supported by the fact that the large vicinal cou-
pling constant (ca. 12Hz) between H-4 and H-4a in the
bisadducts (4 and 5) indicated a trans diaxial relationship. In the
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Scheme 1.
Table 1 Ph
Initial cycloaddition of cross-conjugated azatrienes 1 N
- X - H2 X OO0
Entry  Azatriene R X Time (h) Adduct Yield (%) endo:exo® . SO,R N=N
1 1a Me OEt 23 2a 68 90:10 N >
2 1b p-Tol OEt 15 2b 86 >95:5 PR oNF N pp, CHoCly, rit., 10 min
3 1c Ph OEt 13 2¢ 88 >95:5 H*
4 1a Me SEt 48 3a 68 >95:5
5 1b p-Tol SEt 37 3b 51 >95:5
2,3 (HZ-H* ci 6,7 (H7-H® cis
3 Endo:exo ratio determined based on '"H NMR integration of the endocyclic ole- ( cis) ( i)
finic proton of 2 and 3. Ratio >95:5 denotes that no minor exo-isomer was detected.
Scheme 3.
Table 3
Second cycloaddition with PTAD
Entry R X Diene Adduct Yield (%)
1 Me EtO 2a 6a 99
2 p-Tol EtO 2b 6b 99
3 Ph EtO 2c 6¢ 99
4 Me EtS 3a 7a 99
5 p-Tol EtS 3b 7b 92

Scheme 2.
Table 2
Second cycloaddition with TCNE
Entry R X Diene Conditions Adduct Yield (%)
1 Me EtO 2a rt, 10 min 4a 93
2 p-Tol EtO 2b rt, 10 min 4b 95
3 Ph EtO 2c rt, 10 min 4c 99
4 Me EtS 3a 40 °C, 30 min 5a 76
5 p-Tol EtS 3b 40 °C, 60 min 5b 93
6 p-Tol EtO 2b 110°C, 15h—-rt, 2d 4b 76

endo-monoadduct, the vicinal coupling constants between H-3’
and H-4 and between H-3 and H-4 were observed to be ca. 8 Hz
and 5-6 Hz, respectively, suggesting that H-4 orients in a quasi-
equatorial position, and hence the phenyl substituent takes a qua-
si-axial position. Therefore, the top side of the tetrahydropyridine
ring was blocked by the more bulky phenyl group from attack by
the dienophile.

The reactions of 2 and 3 with 4-phenyl-1,2,4-triazoline-3,5-
dione (PTAD) were also examined to confirm diastereo-n-facial
selectivity (Scheme 3, Table 3). Dienes 2a-c and 3a,b reacted
rapidly within 10 min at room temperature to produce the

cycloadducts 6a-c and 7a,b, respectively, in quantitative yields.
The reaction was highly diastereo-n-face selective, the same as
the reaction with TCNE.

The second DA reaction with N-phenylmaleimide (N-PhMI) was
carried out to examine endo/exo selectivity in addition to diaste-
reo-n-facial selectivity (Scheme 4, Table 4). The monoadducts
2a-c reacted with N-PhMI in refluxing toluene to produce cycload-
ducts 9a or 8b,c as final products. The reaction proceeded with
high endo and n-facial selectivities to give initially the 1:1-cycload-
duct, from which elimination of ethanol occurred to furnish com-
pounds 8b,c or, in the case of entry 1, 9a after H-migration from 8a.

In conclusion, the diene-transmissive hetero-Diels-Alder reac-
tion of N-sulfonylated cross-conjugated azatrienes including an
inverse electron-demand aza-Diels-Alder reaction in the initial

Toluene
110°C

8 (endo)

Scheme 4.
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Table 4
Second cycloaddition with N-PhMI

Entry R Diene Time (h) Adduct Yield (%)
1 Me 2a 3 9a 34
2 p-Tol 2b 18 8h 22
3 Ph 2c 18 8c 21

cycloaddition step has been developed. The protocol provides a
new entry to the highly stereoselective synthesis of octahydro-
quinolines and pyridopyridazines. Further work to extend the
scope of this methodology is currently under way.
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